Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available September 23, 2026
- 
            Martelli, Pier Luigi (Ed.)Abstract MotivationThe affordability of genome sequencing and the widespread availability of genomic data have opened up new medical possibilities. Nevertheless, they also raise significant concerns regarding privacy due to the sensitive information they encompass. These privacy implications act as barriers to medical research and data availability. Researchers have proposed privacy-preserving techniques to address this, with cryptography-based methods showing the most promise. However, existing cryptography-based designs lack (i) interoperability, (ii) scalability, (iii) a high degree of privacy (i.e. compromise one to have the other), or (iv) multiparty analyses support (as most existing schemes process genomic information of each party individually). Overcoming these limitations is essential to unlocking the full potential of genomic data while ensuring privacy and data utility. Further research and development are needed to advance privacy-preserving techniques in genomics, focusing on achieving interoperability and scalability, preserving data utility, and enabling secure multiparty computation. ResultsThis study aims to overcome the limitations of current cryptography-based techniques by employing a multi-key homomorphic encryption scheme. By utilizing this scheme, we have developed a comprehensive protocol capable of conducting diverse genomic analyses. Our protocol facilitates interoperability among individual genome processing and enables multiparty tests, analyses of genomic databases, and operations involving multiple databases. Consequently, our approach represents an innovative advancement in secure genomic data processing, offering enhanced protection and privacy measures. Availability and implementationAll associated code and documentation are available at https://github.com/farahpoor/smkhe.more » « lessFree, publicly-accessible full text available March 1, 2026
- 
            Free, publicly-accessible full text available January 1, 2026
- 
            Abstract As genomic research continues to advance, sharing of genomic data and research outcomes has become increasingly important for fostering collaboration and accelerating scientific discovery. However, such data sharing must be balanced with the need to protect the privacy of individuals whose genetic information is being utilized. This paper presents a bidirectional framework for evaluating privacy risks associated with data shared (both in terms of summary statistics and research datasets) in genomic research papers, particularly focusing on re-identification risks such as membership inference attacks (MIA). The framework consists of a structured workflow that begins with a questionnaire designed to capture researchers’ (authors’) self-reported data sharing practices and privacy protection measures. Responses are used to calculate the risk of re-identification for their study (paper) when compared with the National Institutes of Health (NIH) genomic data sharing policy. Any gaps in compliance help us to identify potential vulnerabilities and encourage the researchers to enhance their privacy measures before submitting their research for publication. The paper also demonstrates the application of this framework, using published genomic research as case study scenarios to emphasize the importance of implementing bidirectional frameworks to support trustworthy open science and genomic data sharing practices.more » « less
- 
            Sharing genomic databases is critical to the collaborative research in computational biology. A shared database is more informative than specific genome-wide association studies (GWAS) statistics as it enables do-it-yourself calculations. Genomic databases involve intellectual efforts from the curator and sensitive information of participants, thus in the course of data sharing, the curator (database owner) should be able to prevent unauthorized redistributions and protect genomic data privacy. As it becomes increasingly common for a single database be shared with multiple recipients, the shared genomic database should also be robust against collusion attack, where multiple malicious recipients combine their individual copies to forge a pirated one with the hope that none of them can be traced back. The strong correlation among genomic entries also make the shared database vulnerable to attacks that leverage the public correlation models. In this paper, we assess the robustness of shared genomic database under both collusion and correlation threats. To this end, we first develop a novel genomic database fingerprinting scheme, called Gen-Scope. It achieves both copyright protection (by enabling traceability) and privacy preservation (via local differential privacy) for the shared genomic databases. To defend against collusion attacks, we augment Gen-Scope with a powerful traitor tracing technique, i.e., the Tardos codes. Via experiments using a real-world genomic database, we show that Gen-Scope achieves strong fingerprint robustness, e.g., the fingerprint cannot be compromised even if the attacker changes 45% of the entries in its received fingerprinted copy and colluders will be detected with high probability. Additionally, Gen-Scope outperforms the considered baseline methods. Under the same privacy and copyright guarantees, the accuracy of the fingerprinted genomic database obtained by Gen-Scope is around 10% higher than that achieved by the baseline, and in terms of preservations of GWAS statistics, the consistency of variant-phenotype associations can be about 20% higher. Notably, we also empirically show that Gen-Scope can identify at least one of the colluders even if malicious receipts collude after independent correlation attacks.more » « less
- 
            Nikolski, Macha (Ed.)Abstract MotivationGenome-wide association studies (GWAS) benefit from the increasing availability of genomic data and cross-institution collaborations. However, sharing data across institutional boundaries jeopardizes medical data confidentiality and patient privacy. While modern cryptographic techniques provide formal secure guarantees, the substantial communication and computational overheads hinder the practical application of large-scale collaborative GWAS. ResultsThis work introduces an efficient framework for conducting collaborative GWAS on distributed datasets, maintaining data privacy without compromising the accuracy of the results. We propose a novel two-step strategy aimed at reducing communication and computational overheads, and we employ iterative and sampling techniques to ensure accurate results. We instantiate our approach using logistic regression, a commonly used statistical method for identifying associations between genetic markers and the phenotype of interest. We evaluate our proposed methods using two real genomic datasets and demonstrate their robustness in the presence of between-study heterogeneity and skewed phenotype distributions using a variety of experimental settings. The empirical results show the efficiency and applicability of the proposed method and the promise for its application for large-scale collaborative GWAS. Availability and implementationThe source code and data are available at https://github.com/amioamo/TDS.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available